lumped-parameters method - significado y definición. Qué es lumped-parameters method
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es lumped-parameters method - definición

MODELING OF A HIGHLY COMPLEX SYSTEM AS MULTIPLE INTERCONNECTED, SIMPLE COMPONENTS
Lumped component; Linear lumped parameter; Lumped parameters; Lumped parameter modelling; Lumped circuit; Lumped element; Lumped system analysis; Lumped system; Lumped parameter model; Lumped parameters model; Lumped components; Lumped component model; Lumped components model; Lumped capacitance model; Lump Capacitance; Lumped-capacitance model; Thermal circuit; Lump Capacitance Method; Lumped matter discipline; Lumped Matter Discipline; Lumped circuit abstraction; Lumped Circuit Abstraction; Lumped element circuit; Lumped element model; Lumped elements; Lumped-element
  • Representation of a lumped model made up of a voltage source and a resistor.

Lumped-element model         
The lumped-element model (also called lumped-parameter model, or lumped-component model) simplifies the description of the behaviour of spatially distributed physical systems, such as electrical circuits, into a topology consisting of discrete entities that approximate the behaviour of the distributed system under certain assumptions. It is useful in electrical systems (including electronics), mechanical multibody systems, heat transfer, acoustics, etc.
Courant–Snyder parameters         
  • One dimensional position-momentum plot, showing the beam ellipse described in terms of the Courant–Snyder parameters.
SET OF QUANTITIES IN ACCELERATOR PHYSICS
Twiss parameter; Draft:Courant Snyder Parameters; Draft:Courant Snyder parameters; Twiss parameters; Courant Snyder parameters; Courant-Snyder parameters; CS parameters; CS parameter
In accelerator physics, the Courant–Snyder parameters (frequently referred to as Twiss parameters or CS parameters) are a set of quantities used to describe the distribution of positions and velocities of the particles in a beam. When the positions along a single dimension and velocities (or momenta) along that dimension of every particle in a beam are plotted on a phase space diagram, an ellipse enclosing the particles can be given by the equation:
Impedance parameters         
  • The equivalent circuit for Z-parameters of a two-port network.
  • reciprocal]] two-port network.
PARAMETERS TO DESCRIBE BEHAVIOUR OF ANY LINEAR ELECTRICAL NETWORK WITH A NUMBER OF PORTS
Z-parameters; Z parameters; Impedance matrix; Z-parameter
Impedance parameters or Z-parameters (the elements of an impedance matrix or Z-matrix) are properties used in electrical engineering, electronic engineering, and communication systems engineering to describe the electrical behavior of linear electrical networks. They are also used to describe the small-signal (linearized) response of non-linear networks.

Wikipedia

Lumped-element model

The lumped-element model (also called lumped-parameter model, or lumped-component model) simplifies the description of the behaviour of spatially distributed physical systems, such as electrical circuits, into a topology consisting of discrete entities that approximate the behaviour of the distributed system under certain assumptions. It is useful in electrical systems (including electronics), mechanical multibody systems, heat transfer, acoustics, etc. This may be contrasted to distributed parameter systems or models in which the behaviour is distributed spatially and cannot be considered as localized into discrete entities.

Mathematically speaking, the simplification reduces the state space of the system to a finite dimension, and the partial differential equations (PDEs) of the continuous (infinite-dimensional) time and space model of the physical system into ordinary differential equations (ODEs) with a finite number of parameters.